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Enteropathogenic Escherichia coli (EPEC), atypical enteropathogenic E. coli, and Shiga toxin-producing E.
coli differ in their virulence factor profiles, clinical manifestations, and prognosis, and they require different
therapeutic measures. We developed and evaluated a robust multiplex PCR to identify these pathogroups based
on sequences complementary to escV, bfpB, stx1, and stx2.

Pathogenic Escherichia coli strains are responsible for a
broad spectrum of intestinal and extraintestinal diseases, in-
cluding diarrhea, urinary tract infections, septicemia, and neo-
natal meningitis (11). Enteropathogenic E. coli (EPEC) and
the majority of clinical isolates of Shiga toxin (Stx)-producing
E. coli (STEC) harbor the “locus of enterocyte effacement”
(LEE), a pathogenicity island that is responsible for the phe-
notype of attaching-and-effacing (A/E) lesions (6, 11).

EPEC are a major cause of human infantile diarrhea pre-
dominantly in less-developed countries but are also identified
with increasing frequency in industrialized areas (1, 11, 17).
These pathogens colonize the small intestine, induce the de-
generation of epithelial microvilli, and intimately adhere to the
host cell. Comparable to a “molecular syringe,” the chromo-
somally encoded type III secretion system injects “effector”
proteins into the host cell, inducing a characteristic rearrange-
ment of the actin cytoskeleton resulting in the formation of
“pedestals.” These characteristic histopathological alterations
are summarized as “A/E lesions.”

The genes responsible for the A/E lesions are located on an
�35-kb pathogenicity island, known as the locus of enterocyte
effacement (LEE). Typical EPEC harbor an additional 60-
MDa plasmid, the EPEC adherence factor (EAF) plasmid
(16), that is not present in atypical EPEC (here abbreviated as
ATEC) strains (3, 28). The EAF plasmid harbors the bundle-
forming pilus (bfp) operon, encoding the type IV pili respon-
sible for localized adherence and the formation of microcolo-
nies on host cells. ATEC strains harbor homologues of the
LEE pathogenicity island but, due to the lack of the EAF
plasmid (3, 8), they mostly adhere in a diffuse pattern to epi-
thelial cells. Recent epidemiological evidence indicates an in-
creasing prevalence of ATEC particularly in developed coun-

tries (see, for example, references 1, 17, 21, and 28) but also in
developing countries (see, for example, references 9 and 27).
This also indicates that in the field the EAF plasmid is not
essential to cause disease.

Like ATEC strains, the closely related STEC responsible
for sporadic infections as well as serious outbreaks world-
wide, mostly harbor the LEE pathogenicity island and lack
the BFP-encoding EAF plasmid. STEC strains differ geno-
and phenotypically from ATEC by their production of Stx.
These pathogens cause an acute inflammation of the colon,
resulting in hemorrhagic colitis with rare but serious se-
quelae including neurological disorders and the hemolytic-
uremic syndrome (HUS), the leading cause of acute renal
failure in children (11, 12).

Identification of EPEC, ATEC, and STEC strains is cur-
rently usually based on serotyping with specific antisera in a
time-consuming process demanding some technical exper-
tise. To facilitate diagnostic and therapeutic measures, we
developed a single multiplex PCR (MPCR) for the simulta-
neous and rapid identification and differentiation of diar-
rheagenic E. coli belonging to EPEC, ATEC, or STEC
pathotypes.
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TABLE 1. Primer pairs used for detection of the
pathotype marker genes used in this study

Primer
pairsa

Target
gene Primer sequence (5�to 3�) Product

size (bp)

MP-escV-F escV GGCTCTCTTCTTCTTTATGGCTG 534
MP-escV-R CCTTTTACAAACTTCATCGCC

MP-bfpB-F bfpB GATAAAACTGATACTGGGCAGC 826
MP-bfpB-R AGTGACTGTTCGGGAAGCAC

MP2-stx1A-F stx1 GGCGTTCTTATGTAATGACTGC 250
MP2-stx1A-R ATCCCACGGACTCTTCCATC

MP2-stx2A-F stx2 CGTTTTGACCATCTTCGTCTG 325
MP2-stx2A-R AGCGTAAGGCTTCTGCTGTG

a -F, forward primer; -R, reverse primer.
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MPCR development: selection of target genes and primer
design. For the development of a single MPCR, we designed
primer pairs (Table 1) that share similar temperature-related
properties and that give rise to DNA fragments of sufficiently
different sizes to be unequivocally resolved by agarose gel
electrophoresis (Fig. 1). Therefore, for the specific identifica-
tion of EPEC, ATEC, and STEC strains, we chose four marker
genes (escV, bfpB, stx1, and stx2) exhibiting the highest degree
of homology among the corresponding sequences found in the
databases. The MPCR was performed in a 25-�l reaction mix-
ture consisting of 1 U of Taq DNA polymerase with the cor-
responding Taq polymerase buffer (Segenetic; Borken), a 0.3
mM concentration of each deoxynucleoside triphosphate, and
a 0.4 �M concentration of each PCR primer. Thermocycling
conditions were as follows: 95°C for 5 min, followed by 30
cycles of 95°C for 1 min, 58°C for 1 min, and 72°C for 1 min,
with a final extension at 72°C for 5 min. The identity of the
amplified fragments was determined by sequencing (SEQLAB;
Göttingen).

Specificity and evaluation of the MPCR. The specificity of
the MPCR was tested on LEE-positive and LEE-negative ref-
erence strains (EPEC E2348/69, ATEC 3431–4/86, STEC
EDL933, STEC 493/89, uropathogenic E. coli KS52, and apatho-
genic E. coli C600). As shown in Fig. 1, the specific DNA
fragments corresponding to the genes defining the appropriate
LEE-harboring phenotypes (EPEC carrying LEE and bfp but
not stx, ATEC carrying LEE but not bfp or stx, and STEC
lacking bfp and/or LEE but carrying stx) were easily detected
by MPCR in a single experiment using the listed primer pairs
(Table 1). The escV gene was detected in reference strains
encompassing all of the intimin subtypes (�, �, �, ε, �, 	, 
, �,
and �) known thus far (30) and validated by sequencing.

Moreover, the MPCR primer pairs MP2-stx1A-F/R and
MP2-stx2A-F/R detected STEC belonging to each of the four
different seropathotypes that have been identified among hu-
man STEC isolates by Karmali et al. (12). Most of the clinical
STEC isolates possess genes encoding Stx1, Stx2 or their vari-
ants (4, 7, 14, 23, 24). These include stx1c, stx1d, stx2c, stx2d, and
stx2e that were all correctly detected using the primers MP2-
stx1A-F/R and MP2-stx2A-F/R included in the MPCR. As
expected, stx2f, which is the prevalent stx gene in STEC strains
isolated from pigeons (22, 25), could not be detected by the
novel MPCR because its sequence identity to stx2 of E. coli
O157:H7 strain EDL933 is only 63.4 and 57.4% for the A- and
B-subunit genes, respectively (22). Although a single case of
diarrhea caused by an stx2f-harboring E. coli strain has been
recently reported (24), this stx allele appears to be extremely
rare among human isolates (7).

Validation of MPCR with clinical isolates comprising dif-
ferent pathogroups. The comparison of the analysis of 184 of
281 well-defined clinical isolates comprising EPEC, ATEC,
and STEC by MPCR and single PCRs targeting eae, stx1, and

FIG. 1. Whole-cell multiplex-PCR pattern of reference strains
EPEC E2348/69 (carrying LEE and the EAF plasmid but no stx genes),
ATEC 3431-4/86 (carrying LEE, but lacking the EAF plasmid and stx),
E. coli C600 (lacking LEE, the EAF plasmid and stx), uropathogenic E.
coli KS52 (lacking LEE, the EAF plasmid and stx), STEC EDL933
(carrying LEE, stx1 and stx2, but lacking the EAF plasmid), and STEC
493/89 (carrying LEE and stx2 but lacking the EAF plasmid). To
identify the LEE pathogenicity island, we used primer pairs specifically
for escV; for the EAF plasmid we designed primer pairs for the bfpB
gene, and for the Shiga toxins (Stx) of STEC strains we used the
primers MP2-stx1A-F/R and MP2-stx2A-F/R that correctly detected
stx1 and stx2 and their variants stx1c, stx1d, stx2c, stx2d, and stx2e.

TABLE 2. Detection of virulence genes
in clinical isolates using MPCR

Pathogroup Serotype
(no. of strains)

No. of strains

Results of single
PCRs targeting:

Results of MPCR
targeting:

eae bfp stx1 stx2 escV bfp stx1 stx2

Classical O55:H6 (10) 10 10 – – 10 10 – –
EPEC O86:H
 (3) 3 3 – – 3 3 – –

O111:H
 (3) 3 3 – – 3 3 – –
O111:H2 (8) 8 8 – – 8 8 – –
O114:H2 (1) 1 1 – – 1 1 – –
O127:H
 (1) 1 1 – – 1 1 – –
O128:H2 (3) 3 3 – – 3 3 – –
O142:H6 (2) 2 2 – – 2 2 – –
O144:H2 (1) 1 1 – – 1 1 – –

ATEC O8:H
 (1) 1 – – – 1 – – –
O26:H
 (1) 1 – – – 1 – – –
O26:H11 (23) 23 – – – 23 – – –
O55:H
 (1) 1 – – – 1 – – –
O55:H6 (1) 1 – – – 1 – – –
O55:H7 (7) 7 – – – 7 – – –
O86:H8 (1) 1 – – – 1 – – –
O119:H9 (1) 1 – – – 1 – – –
O127:H40 (2) 2 – – – 2 – – –
O128:H
 (1) 1 – – – 1 – – –
O128:H2 (3) 3 – – – 3 – – –
O128:H8 (1) 1 – – – 1 – – –

STEC O157:H7 (3) 3 – 3 – 3 – 3 –
O157:H7 (25) 25 – – 25 25 – – 25
O157:H7 (5) 5 – 5 5 5 – 5 5
SF O157:NM (25) 25 – – 25 25 – – 25
O26:H11 (10) 10 – 10 – 10 – 10 –
O26:H11 (15) 15 – – 15 15 – – 15
O26:H11 (10) 10 – 10 10 10 – 10 10
O111:H
 (1) 1 – 1 – 1 – 1 –
O111:H8 (1) 1 – 1 1 1 – 1 1
O111:H8 (2) 2 – 2 – 2 – 2 –
O145:H25 (1) 1 – 1 1 1 – 1 1
O145:NM (10) 10 – – 10 10 – – 10
O60:H
 (1) – – – 1 – – – 1
O91:H21 (3) – – – 3 – – – 3
O101:H9 (1) – – – 1 – – – 1
O126:H29 (1) – – 1 – – – 1 –
O128:H2 (1) 1 – – –a 1 – – –

a The stx2f gene was present in this strain, which was recently isolated from a
stool of a child with diarrhea (25). –, Strains harboring the respective virulence
gene were not detected.
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stx2 as single genes demonstrated that both approaches yielded
the same virulence gene patterns (Table 2). Moreover, 97 of
281 E. coli strains belonging to enterotoxigenic E. coli (ETEC),
enteroinvasive E. coli, and enteroaggregative E. coli tested
negative in the MPCR.

Validation of MPCR with stool samples from healthy vol-
unteers and patients with diarrhea and HUS. Stool samples
from healthy volunteers (n � 50) were all negative, emphasiz-
ing the specificity of the MPCR. We then tested 100 stool
samples from patients with HUS and diarrhea in parallel by
single PCRs targeting eae, stx1, and stx2 and by MPCR. As
shown in Table 3, there was 100% agreement between both
methods for the identification of ATEC and STEC. Classical
EPEC strains were not found in any of these samples.

Numerous MPCR methods have been developed for the
identification of E. coli pathotypes (2, 15, 18–20, 26, 29), in-
cluding approaches by real-time PCR (see, for example, refer-
ences 5 and 18). However, most of the MPCR methods in the
literature harbor limitations in terms of the number of targeted
genes, specificity, the resolution of amplified fragments in aga-
rose electrophoresis, nonspecific amplification, and the inabil-
ity to differentiate between EPEC and ATEC strains. Recently,
an MPCR has been introduced by Kimata et al. (13) that
targets 12 genes to differentiate between diarrheagenic E. coli
pathotypes. However, it appears that a differentiation between
EPEC and ATEC might not be straightforward, and thus the
additional investigation of HEp-2 adherence patterns has been
suggested. Real-time PCR and DNA array (10) approaches
have the advantage of higher sensitivity but are usually quite
expensive.

Therefore, in the present study, a novel single MPCR has
been developed that allows for the specific differential detec-
tion of LEE-harboring EPEC, ATEC, and STEC isolates and
also identifies LEE-negative STEC strains in a straightforward
and robust reaction. By several rounds of redesign and opti-
mization, four highly specific primer pairs were developed
which, combined in one reaction, gave rise to amplicons that
are well resolved by agarose gel electrophoresis. The specificity
of the MPCR was demonstrated with reference strains, as well

as with numerous well-characterized clinical isolates. The eight
primers developed in the present study proved to be specific
for the corresponding four genes, since we could not observe
any cross-priming or the amplification of nonspecific DNA
fragments. Further evaluation of the tetrameric MPCR with
281 clinical E. coli isolates and 150 stool samples demonstrated
that the MPCR is highly specific and reliable. We conclude
that the newly designed MPCR is a specific method for the
identification and differentiation of EPEC, ATEC, STEC, and
LEE-negative STEC strains. As a fast, straightforward, and
robust technique, it might be introduced into routine diagnos-
tic in clinical microbiological laboratories.
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